Probabilistic Model-Based Clustering in Data Mining
In a statistical setting, probabilistic model-based clustering can be beneficial for arranging the data. The foundation of probabilistic model based clustering in data mining is finite combinations of multivariate models. This fundamental technology, based on finite mixtures of sequential models, is essential for quickly clustering sequential data. In other words, clustering is a technique for unsupervised learning in which we extract references from datasets that only contain input data and no identified outcomes.
Clustering is the process of dividing a population or collection of data elements into groups so that data points in the same group are more comparable to other data points in the same group and different from data points in other groups. Understanding probabilistic model based clustering in data mining begins with understanding data science; you can get an insight into the same through our Data Science training.
Comments
Post a Comment